Aberdeen Built Ships

This project was one of several initiated at the fully-online Code the City 19 History and Data event.

It’s purpose is to gather data on Aberdeen-built ships, with the permission of the site’s owners, and to push that refined bulk data, with added structure, onto Wikidata as open data, with links back to the Aberdeen Ships site through using a new identifier.

By adding the data for the Aberdeen Built Ships to Wikidata we will be able to do several things including

  • Create a timeline of ship building
  • Create maps, charts and graphs of the data (e.g. showing the change in sizes and types of ships over time
  • Show the relative activity of the many shipbuilders and how that changed
  • Link ship data to external data sources
  • Improve the data quality
  • Increase engagement with the ships database.

The description below is largely borrowed from the ReadMe file of the project’s Github Repo.

Progress to date

So far the following has been accomplished, mainly during the course of the weekend.

Next Steps?

To complete the project the following needs to be done

  • Ensure that the request for an identifier for ABS is created for use by us in adding ships to Wikidata. A request to create an identifier for Aberdeen Ships is currently pending.
  • Create Wikidata entities for all shipbuilders and note the QID for each. We’ve already loaded nine of these into WikiData.
  • Decide on how to deal with the list of ships that MAY be already in Wikidata. This may have to be a manual process. Think about how we reconcile this – name / year / tonnage may all be useful.
  • Decide on best route to bulk upload – eg Quickstatements. This may be useful: Wikidata Import Guide
  • Agree a core set of data for each ship that will parsed from ships.json to be added to Wikidata – e.g. name, year, builder, tonnage, length etc
  • Create a script to output text that can be dropped into a CSV or other file to be used by QuickStatements (assuming that to be the right tool) for bulk input ensuring links for shipbuilder IDs and ABS identifiers are used.

We will also be looking to get pictures of the ships published onto Wiki Commons with permissive licences, link these to the Wiki Data and increase and improve the number of Wikipedia articles on Aberdeen Ships in the longer-term.

Header Image of a Scale Model of Thermopylae at Aberdeen Maritime Museum By Stephencdickson – Own work, CC BY-SA 4.0

You can lead a horse to water but Covid19 data must be scraped

Just over a month ago I wrote about the lack of Covid19 Open Data for Scotland.

I showed how the Italian health authorities were doing just what was needed in the most difficult of circumstances. I explained how, in the absence of an official publication of open data (in an openly-licensed, neutral format, machine-readable format ) I’d taken it on myself on 15th March 2020 to gather and publish the data. My hope was that I’d have to do it for a week or two then the Scottish Government would take over.

And here we are five weeks and one day later and I am still having to do it. Meantime a growing list of websites and applications has developed to use the data which is great but adds to the pressure.

So what’s happened in the intervening time and, more importantly, what hasn’t?

From manual to coded scraping

Originally I was gathering the data manually. Going to the Scottish Government web page and retyping the data into CSVs. This is a terrible practice – open to errors and demanding double and triple checking before pushing to Github. While it looked like my publication was going to be short term that hardly mattered.

But as the weeks dragged by I had to concede that there was no rescue coming from Scottish Government any time soon. Initially it appeared that the daily data was going to be published openly via their statistics platform. That eventually morphed into an additional but different set of data (from National Records of Scotland, not HPS).

So, I resolved to build a scraper – a piece of code that will read the HTML of a webpage and extract the data from that. Sounds easy – but in practice it can be far from it.  And when all is said and done it is the most brittle of solutions: as any small change can break the code.

SG Nested Span Tags
Nested Span Tags on the SG web page

Given how poorly the page was structured (endless nested blank span tags being just one crime against HTML) I didn’t have a great deal of confidence that it could be kept working.

I built it and tested it daily but it wasn’t until 14th April that I was confident enough that it would work daily. Even then it wouldn’t take much to derail it. At that point it was 360 lines of code just to get a few dozens numeric values from a single page.

There is probably some law named after someone wiser than me that says that once you launch a piece of software it will be broken the very next day, and so it did the very next morning. The scraper relies on knowing the structure of a page – finding bulleted lists, tables, and iterating through those structures looking for patterns to match and grabbing the numbers.

Since then the Scottish Government have changed the structure of the page as many as six times, including

  • making the final item in a bulleted list into a new paragraph on its own right,
  • removing a table completely,
  • and today changing the format of numbers in a table to include commas where none were used before.
Text all in bullets
Text all in bullets
Final list item now a para
Final list item now a para

If you are interested I have archived the page contents for each day (minus the styling).

A breakthrough?

Last week it looked like we might have an easier solution on our hands: not only did they change the URL of the page with the data, they then without fanfare added a new XLSX spreadsheet with the daily data in it, updated each day. While not a CSV file, it appeared that it would be very useful.

So yesterday I started to code up a routine to

  • grab the XSLX file,
  • download that,
  • save it as a reference copy, then
  • figure out the worksheet names which have data, not charts,
  • go to those worksheets,
  • find the ranges with the data (ignoring comments in rows above the data, to the right of the data, below the data – see image below),
  • extract that data and write it back to plain CSV files as I was doing wth my original scraper.
A screenshot of one worksheet showing one area of data and three of non-data (red)
A screenshot of one worksheet showing one area of data (green) and three of non-data (red)

Having tested the first part of it yesterday I re-ran it today and it broke. It turns out the URL at which the spreadsheet is published changes from day to day. I suspect that this is as a result of some sort of Content Management System.

All of which means I have to now do another scraper to identify each day’s URL before I can do any of the above.

Why are we in this position?

The current position defies logic. There are so many factors that should have meant that Scottish Government would have this sorted out by now.

  1. I’d identified the need for plain CSV publishing previously, and very publicly, giving good examples.
  2. I’d had an email from contact in SG mentioning two of my CSV files (in the context of the forthcoming NRS data publication).
  3. I work as part of the Civic Society group as part of the Open Government partnership, and I am the lead for open data.
  4. So people know where to find me and interact with me.
  5. I have blogged extensively about what we need – and have emailed contacts at SG.
  6. As part of the planning for Scottish Open Data Unconference I set up a Slack group to which SG contacts were invited – and I believe some signed up.
  7. So there are forms through which, if there was any uncertainty, anyone at SG could ask “what does the data community want?” or “we’re thinking about doing ‘x’ would that work for you?” But there has been no such approach.

Meantime, I’ve spent many 10s of hours for no financial reward doing what Peter Drucker called ‘doing the wrong thing righter.” i.e. allowing the SG to continue to publish data wrongly on the basis that the effort is transferred onto the community to create work-arounds.

After five weeks of doing this daily, I’m absolutely fed up of it. I’m going to formally raise it through the Open Government Partnership with a view to getting the right data, in the right format, published daily.

 

Header picture cropped from a photo by Nathan Dumlao on Unsplash

Scotland’s Covid-19 Open Data

We are in unprecedented times. People are trying to make sense of what is going on around them and the demands for up to date, even up-to-the-minute,  information is as never before. Journalists, data scientists, immunologists, epidemiologists and others are looking for data to use to develop that information for the broader public, as well as to feed into predictive modelling. That means that governments and Health Services at all levels (UK and Scotland) need to be publishing that data quickly, consistently, and in a way that makes it easy for the data users to consume it. They need to look at best practice and quickly adopt those standards and approaches.

Let’s start with what this post is not. It is not a criticism of some very hard pressed people in NHS Scotland and Scottish Government who are trying very hard to do the right thing.

So, what is it? It is an honest suggestion of how the Scottish Government must adapt in how it publishes data on the most pressing issue of modern times.

The last five days

Last Sunday, 15th March, as the number of people in Scotland with Covid-19 started to climb in Scotland (even if numbers were still low in comparison to other EU countries) I went looking for open data on which I could start to plan some analysis and visualisation. And I found none.

What I did find was a static HTML webpage. This had the figures for that day:  the  total number of tests conducted, the total number of negative results, and the number of positive cases for each Health Board. This page is then overwritten at 2pm the next day. This is an awful practice, also used by Scotrail to hide its performance month on month.

I was able, using the Internet Wayback machine, to fill in some gaps back to 5th March but that was far from complete. I published what I could on GitHub and mentioned that on Twitter and in a couple of Slack Groups. Thankfully a friend, Lesley, was ahead of me in terms of data collection for her work as a data journalist, and was able to furnish testing data back to the start on 24 January 2020. Since then I’ve updated the GitHub repo daily – usually when the data is published at 2pm.

Almost immediately I began, a couple of people started to build visualisations based on what I had put in GitHub including this one. Some said that they were waiting for the numbers to climb to more significant levels, particularly deaths before they would start to use the data.

Two or three times the data has been published then corrected with some test results for Shetland / Grampian being reassigned between the two. This is understandable given the current circumstances.

SG webpage with table of Covid19 daily cases
SG webpage with table of Covid19 daily cases

On 19 March 2020, the 2pm publication was delayed, with the number of fatalities, and positive results being published after 3.30pm and the total number of tests being published after 7pm. Again – this is undertandable. The present circumstances are unprecedented, process are being developed. Up to now much of Scotland’s open data publication has been done, if at all, at a more leisurely and considered pace. It does make one wonder how, as the numbers rise exponentially, as they surely will, how the processes will cope.

Why is this important?

At this time the public are trying to make sense of a very difficult situation. Journalists, scientists and others are trying to assist in that by interpreting what data there is for them, including building visualisations of that. People are also seeking reassurances – that the UK and Scottish Government are on top of the situation. Transparency around government activity such as testing, and the spread of the virus, would build trust. Indeed there is real concern that Scotland, and the UK as a whole, is not meeting WHO guidance on testing and tracing cases.

But with a static web page, with limited range of data that is erased daily, this is not possible. Even setting up a scraper to grab the essential content from that page is not feasible if the data is only partially published for long periods.

We have some useful data visualisations such as this set by Lesley herself. What can be done is limited. Deaths per health board are are collected, we’ve been told, but they are not published – only a Scotland-level total.

I’ve had it confirmed by someone I know in the Scottish Government that they are looking at creating and posting Linked Open Data which I suspect will be on their platform, which is a great resource but which is seen by many as a barrier to actually getting data quickly and simply.

Italian government GitHub repo
Italian government GitHub repo

Compare this with the Italian Government who have won plaudits from the data science, journalism and developer communities for making their data available quickly and simply using GitHub  as the platform. This is one that is familiar to the end-users. They also have a great range of background information (look at it in Chrome which will translate it). On that platform they publish daily national and regional statistics for

  • date
  • state
  • hospitalised with symptoms
  • intensive care
  • total hospitalised
  • home isolation
  • total currently positive
  • new currently positive
  • discharged healed
  • deceased
  • total cases
  • swabs tests.

Not only is the data feeding the larger, world-wide analysis such as that by Johns Hopkins University, but people at a national level are using that data to create some compelling, interactive visualisations such as this one. As each country starts to recover and infections and deaths start to slow, having ways o visualising that depends on data to drive those views.

[edited] Wouldn’t a dashboard such as this one for Singapore, built by volunteers, be a good thing for Scotland? We could do it with the right data supplied.

Singapore dashboard
Singapore dashboard

[/edited]

So, this is a suggestion, or rather a request, to NHS Scotland and the Scottish Government to put in place a better set of published data, which is made available in as simple and as timely a fashion as can be accomplished under the present circumstances. Give us the data and we’ll crowd-source some useful tools built on it.

How to do that?

The Scottish Government should look to fork one of the current repositories and using that as a starting point. In an ideal world that would be the Italian one – but even starting with my simple one (if the former is too much) would be a step forward.

Also, I would encourage the government to get involved in the conversations that are already happening – here for example in the Scottish Open Data group.

There is a large and growing community there, composed of open data practitioners, enthusiasts and consumers, across many disciplines, who can help and are willing to support the government’s work in this area.

Aberdeen Plaques – Part Two

In part one I described what we did at CTC18 to capture data and images of Commemorative Plaques in Aberdeen, and what I then did in the following three weeks.

A few people asked my why we would bother to put plaques into Wikidata and WikiCommons in this way. Why not have a council website – or why not use Open Plaques?

In this second instalment I am going to demonstrate how we can use the data which we have created to make some interesting visualisations and even do some calculations and analysis.

It can also power other new apps and services – allowing developers to create tailored routes around the city, on themes such as the arts or medicine – which is beyond the scope of this post.

Getting Started

At the time of writing we now have 132 Aberdeen Commemorative Plaques recorded  in Wiki Data.

I can check that with this simple query on the Wiki Data Query Service:

Plaques - Query One
Plaques – Query One

All that this does is ask for every instance (P31) of a commemorative plaque (Q721747) whcich is located in (P131) the Aberdeen City (Q62274582) area.

Try It for yourself.

Click on the white-on-blue arrow at the left. See what it produces. Note the bottom half of the screen turns into a table of results, and on the centre bar there is a message ‘xxx results in xxxx milliseconds‘.

How many pictures of plaques?

I can retrieve the photograph for plaque using the following query.

Plaques - Query Two
Plaques – Query Two

Here I am saying give us plaques which have image (P18). In effect this is saying ONLY those that have an image. If not all entries have an image, yet, then we will get a smaller number.

Try it.

As I run it I get 126 – which is six fewer than I got plaques.

Get all plaques with images or not

Let’s modify the query to this.

Plaques - Query Three
Plaques – Query Three

Here I am the OPTIONAL command which has the effect of saying IF there is an image give me it, but don’t restrict the results to only those with images. When we run that we can spot the missing ones by scrolling down through the list. I get six plaques with no images. This is a useful technique to spot missing things when totals (in this case plaques and images) don’t tally.

Try it.

Commemorating who or what?

As it stands the query is still not very user-friendly as all we have for the plaques is their Plaque ID. Of course we can click on those, but it would be more helpful to have the names of their subjects.

We’ll do that in two steps.

Firstly, let’s work out what the subjects are.

We can add the following line to the query and remember to add ?subject to the SELECT on the first line.

 ?plaque wdt:P547 ?subject

Note P547 is the statement “commemorates“.

Try it

If we run that we get a new column called subject and it is filled with links to subject IDs, which are the Wikidata entries for either people or things that the plaques commemorates. I note that when I run it my list has grown from 132 to 134.

Any guesses why that should be?

Some of the plaques commemorate more than one person.

Let’s make it a bit more friendly.

Add the following line just before the end of your query

 SERVICE wikibase:label {bd:serviceParam wikibase:language "en". }

And change ?subject to ?subjectLabel in the first line.

This instructs the WikiData Query service to use another service to retrieve labels from the items.

Plaques - Query Four
Plaques – Query Four

The label is in effect the title of the Wikidata item. Look at this one https://www.wikidata.org/wiki/Q80818579 Immediately below the title, and to the left, there is an edit link. Click that. See how the ‘label‘ and the ‘description immediately below it become editable. Cancel that for now.

Try running that query to get subject names (labels) back

Now we have a name (in a subjectLabel column) for who or what is being commemorated.

Which provosts have plaques?

We can ask which of our plaques commemorates a previous Lord Provost of Aberdeen.

We use the P547 (commemorates) statement to get our subject, then use the following

subject wdt:P39 wd:Q57906938.

where P39 is Position Held, and Q57906938 is the identifier for Lord Provost of Aberdeen.

Plaques - provosts?
Plaques – provosts?

Currently we appear to have four plaques to former Lord Provosts.

Note: the “Try it” link below has been updated to take  account of subsequent work done to separate Provosts and Lord Provosts into separate categories.

Try it

A different view

At this point you might want to change the view for your query just to have a look at the images we have.

Above the table of results, on the extreme left there is an eye symbol and a drop down. Choose “Image Grid” to see the images only.

Plaques - change view
Plaques – change view

You might also have noticed that there are other options, several of which are greyed out as we don’t yet have that data in our query. These views include ‘Map‘ and “Timeline‘. We’ll come back to those.

Our Image Grid looks something like this:

Plaques - Image Grid
Plaques – Image Grid

Remember to swap back to ‘Table’ view once you’ve finished.

Adding more data fields

We can now add more data fields to our query.

Firstly, let’s add the geographic coordinates of the plaques’ locations.

Add the following line to your code:

 OPTIONAL {?plaque wdt:P625 ?coordinates .}

and, again add the new value, ?coordinates to the first line of the query too.

You will now have an extra field in the returned data table.

Try it 

Mapping results

Now change the view from Table to Map. The Wikidata query service automatically uses the coordinates to plot the results on a map which is scaled to show the results. You may need to scroll down to see all of the map. Click on one of the plotted points. You should get a pop up with the name of the person or building commemorated, plus a photo of the plaque itself, as shown below.

Plaques - map view
Plaques – map view

Note – if you add the following as the first line of your query, it will default to a map view rather than table when first run.

#defaultView:Map

Now let’s see if we can get more data for the people for whom there are plaques.

Dates of birth and death

We can change our query to find out if there are dates of birth and death for our human subjects  (rather than buildings).

We can use P569 (date of birth) and P570 (date of death) and ascribe those to
?DOB and ?DOD respectively – again, adding those fields to our SELECT statement on line one. Your query should look like this?

Plaques - Query Five
Plaques – Query Five

Try it

Looking at our table of results we can see that we have a mix of types of results – people, bridges, buildings etc. but only the people have dates.

Table showing dates of birth
Table showing dates of birth

Interestingly the one subject with the DOB and DOD in the screenshot above is Elizabeth Crombie Duthie who gifted Duthie Park to the city of Aberdeen.

Remember, if you change the DOB and DOB from being OPTIONAL to just being regular requests, you can filter records to show ONLY those with dates associated with them which will screen out not only non-human subjects but will exclude any people with incomplete or missing dates.

Notable people

It could be argued that the fact there is a plaque to a person would indicate that they are notable, but not every person or object for which there is a plaque has a Wikipedia article. Let’s add some code to see which of our plaques has an associated article.

Plaques - Query Six
Plaques – Query Six

Try It

Changing the above so that we remove the OPTIONAL {} around the section beginning ?article  we get ONLY those with Wikipedia articles which is, as I run it, 79 plaque subjects.

You can if you want we add the following

 ?subject wdt:P31 wd:Q5 .

where P31 (instance of ) is Q5 (human) we can screen out all of the non-people plaques.

Try it

At this point, try flipping the view to TimeLine – you may have to scroll down quite a way to see all of the plaques. Many of them are concentrated at the right, spanning much of the 20th century. You should see John Barbour (1316-1395 at the extreme left).

Plaques - timeline
Plaques – timeline

Finally, before we start doing some statistical analysis let’s try something more sophisticated.

Can we create a map showing only female subjects whose work was in the medical sciences?

To do that we need to select only subjects who have a P21 (gender or sex) of Q6581072 (female). Then we need to select an occupation (P31) which is an instance or subclass of Q66811410 (the medical profession). This requires a structure that we haven’t see before:

?occupation wdt:P31/wdt:P279* wd:Q66811410

While we are at it, let’s get an image of the subject if there is one, and find out of there is a wikipedia article about the subject. And, since we want a map, we add that as our default view at the top.

Plaques - map of female medics
Plaques – map of female medics

This gives us the following output:

Map view of female medics
Map view of female medics

Try it

Changing this query to male (Q6581097) or choosing different types of professions is straightforward.

Statistical analysis

The Wikidata Query Service allows us to move beyond visualising the data in different ways. Let’s have a look at a couple of examples.

Analysing who or what is commemorated

The following query finds out what the subject of the plaque is an instance of (P31) – line 6:

Plaque - query seven
Plaque – query seven

but instead of creating a list, it use the COUNT () function to analyse the subject being an instance of (P31) Instance Of.

Try it

We can see that we have 105 humans, 5 lanes etc. Note that some double counting occurs. Some structures, for example, are instances of two things.

We can also analyse the gender of the human subjects just by changing P31 in the above to P21 (Sex or Gender).

At present I get

Plaques by gender
Plaques by gender

That’s far from gender equality, isn’t it!

What’s in a name?

Ascertaining the most common first names on plaques is also straightforward.

We use P735 (given name) statement, get the labels, count and group by those.

Try it.

We get the following results

Plaques - given names chart
Plaques – given names chart

With 81% of plaques to people being for males it is hardly surprising that our league table of names begins with James, William, George, John, Alexander ….

We can do more sophisticated analysis too.

Analysing Occupations

We can add the following line to our query to get back the occupation of the subject of the plaque:

 ?subject wdt:P106 ?occupation

Bear in mind that many of our plaque subjects are true polymaths. Have a look at Robert Brown. He has 10 listed occupations!

So what are the most common occupations of those people for whom there are plaques? Any guesses?

Let’s use the following query:

Plaques - Using Count()
Plaques – Using Count()

This uses the COUNT () function as well as a GROUP BY clause. The query looks at all of the different occupation labels, counts how many of each there are.

Try it

This returns, by default, a table of values. We can flip to a Bar Chart to make better sense of the data:

Plaques - Bar Chart of occupations
Plaques – Bar Chart of occupations

So, we can see that for those commemorated by a plaque the most common occupations are Physician, Painter, University Lecturer, Writer and so on.

We can add a couple of refinements if we wish. If we want our query to default to a BarChart when we run it we can add the following line at the start of the query:

#defaultView:BarChart

and if we want the table to be sorted by value we can add a line such as

ORDER BY DESC (?count)

Try it

What next?

Over the last month I’ve been busy gathering data, taking photographs and publishing all of those on WikiData and wiki Commons. That phase is not quite complete, if it ever could be considered complete. You can monitor live progress here.

There are a couple of photographs which I can’t easily take which I know Aberdeen City Council’s Museum and Galleries team have. It would be great to see those made available by them on Wiki Commons, as I have shared the 148 plaque photos I have taken.

I know of at least 24 more plaques which I have photographed which are not listed yet in Wikidata.

When I published part one of this series I got some great feedback on Twitter. One suggestion is that we add structured data to the Wiki Commons pages for each photograph. Another was to add further data to the record for each plaque using statement P276 (location) where the plaque is on a known listed building. So far I have done that for 5 plaques – check it for yourself. There are loads more to do.

Many of the people records that I have created in Wikidata are skeletal. They need more detail, photographs, biographical links etc. Similarly, given that people or places are noteworthy enough to merit a plaque, they should pass the notability test for Wikipedia, yet at least 68 plaque subjects have no Wikipedia entry.

And plaques are just a start – an easy introduction to what is possible given, in this case, about 100 hours of work. While that was almost all done by one person, if we ran a Code The City weekend on a similar theme and similar sized challenge, six people could achieve the same over a weekend with a little coordination.

At Code The City, we’re about to start discussions with the local cultural institutions about setting up a more formal alliance for the city (shire?) to help shape how they use digital and data more effectively and grow volunteers with skills and tools to make that happen, which is an exciting note on which to finish this post! Watch this space, as they say.

Ian

Joining the dots between Britain’s historical railways using Wikidata – Part One

A bit of background

The evening before Code The City 18 I started to think about what fun project to spend the day doing at our one day mini-hack event. After reading Ian Watt’s blogpost about Wikidata and spending 10 minutes or so playing around with it, I decided a topic for further experimentation was required.

At the time of writing, I’m just over a third of the way through my very interesting part-time online MA Railway Studies at University of York. Looking at Britain’s railways from their very beginning, there are many railway companies from 1821 onwards. Some of these companies merged, some were taken over, others just disappeared whilst others were replaced by new companies. All these amalgamations eventually led to the “Big Four” groupings in 1923 and then on to British Railways in 1948’s railway nationalisation. British Railways rebranded as British Rail in 1965 and then splintered into numerous companies as a result of the denationalisation of the 1990s.

With the railway companies appearing in some form or another in Wikipedia, I thought it would be useful to be able to pick any railway company and view the chain of companies that led to it and those that followed. The ultimate goal would be to be able to bring up the data for British Rail and then see the whole past unfold to the left and the future unravel to the right. In theory at least, Wikidata should allow me to do that. 

No software coding skills are required to see the results of my experimentation: by clicking on the links provided (usually directly after the code) it is possible to run the queries and see what happens. However, using the code provided as a start, it is possible to build on the examples to find out things for yourself.

Understanding Wikidata and SPARQL

SPARQL is the query language used to retrieve various data sets from Wikidata via the Wikidata Query Service.

As is always the case with anything software related, the examples and tutorials never seem to handle those edge cases that you seem to hit within the first 5 minutes. Maybe I hit these cases so soon due to jumping straight from the “hello world” of requesting all the railway companies formed in the UK to trying to build the more complex web of railway companies rather than working my way through all the simpler steps? However, my belief is to fail quickly, leaving plenty of time left to fail some more before succeeding, after all you never see a young child plan out a strategy when they are learning to get the different shaped blocks through the correct holes.

At the time of writing…

Comments about the state of certain items of data were relevant at the time I wrote this article. As one of the big features of Wikidata is it constantly being updated, expanded and corrected, the data referenced may have changed by the time you read this. Some of the changes are those I’ve made in reaction to my discoveries, but I have left some out there for others to fix.

A simple list

First off, I created a simple SPARQL query to request all the railway companies that were formed in the UK.

SELECT ?company ?companyLabel
WHERE {
?company wdt:P31 wd:Q249556; wdt:P17 wd:Q145 .
SERVICE wikibase:label {
bd:serviceParam wikibase:language “en”.
}
}
ORDER BY (lcase(?companyLabel))

Run the query

The output of this query can be seen by running it yourself here by clicking on the white-on-blue arrow displayed on the Wikidata Query Service console. It is safe to modify the query in the console without messing up my query as any changes cause a new bookmarked query to be created. So please experiment as that’s the only way to learn.

Now what does the query mean and where do all those magic numbers come from?

  • wdt:P31 means get me all Wikidata triples (wdt) that have the property instance of  (P31) that is has a value of railway company (Q249556).
  • wdt:P17 means get me all of the results so far that have the property country (P17) set to United Kingdom (Q145).

Where did I get those numbers from? First, I went to Wikipedia and searched for a railway company, LMS Railway, and got to the page for London, Midland and Scottish Railway. From here I went to the Wikidata item for the page.

Screen grab of Wikipedia page for LMSR that shows how to get to the Wikidata
Wikipedia page for LMSR that shows how to get to the Wikidata

From here I hovered my pointer over instance ofrailway companycountry and United Kingdom to find out those magic numbers.

Screen grab of the Wikidata page for LMSR
Wikidata page for LMSR

Some unexpected results

Some unexpected companies turned up in the results list due to my query not being specific enough. For example, Algeciras Gibraltar Railway Company, located in Gibraltar but with headquarters registered in the UK the data has its country as United Kingdom. To filter my results down to just those that are located in the UK I tried searching for those that had the located in the administrative territorial entity (P131) with any of the following values:

  • England (Q21) 
  • Northern Ireland (Q26)
  • Scotland (Q22)
  • Wales (Q25)
  • Ireland (Q57695350) (covering 1801 – 1922)

using this query:

SELECT ?company ?companyLabel ?countryLabel
WHERE {
  VALUES ?country { wd:Q21 wd:Q26 wd:Q22 wd:Q25 wd:Q57695350 }
  ?company wdt:P31 wd:Q249556; wdt:P17 wd:Q145; wdt:P131 ?country.
  SERVICE wikibase:label {
bd:serviceParam wikibase:language "en".
}
}

ORDER BY (lcase(?companyLabel))

Run the query

However, that dropped my result set from 228 to 25 due to not all the companies having that property set.

Note: When trying to find out what values to use it is often quick and easy to run a simple query to ask Wikidata itself. To find out what all the values were for UK countries I wrote the following that asked for all countries that had an instance of value of country within the United Kingdom (Q3336843):

select ?country ?countryLabel
WHERE {
  ?country wdt:P31 wd:Q3336843 .
  SERVICE wikibase:label {
 bd:serviceParam wikibase:language "en".
  }
}

Run the query

Dates

In order to see what other information could easily be displayed for the companies, I looked at the list of properties on the London, Midland and Scottish Railway. I saw several dates listed so decided that would be my next area of investigation. There is an inception (P571) date that shows when something came into being, so I tried a query with that:

SELECT ?company ?companyLabel ?inception
WHERE {
  ?company wdt:P31 wd:Q249556; wdt:P17 wd:Q145 .
  ?company wdt:P571 ?inception 
  SERVICE wikibase:label {
   bd:serviceParam wikibase:language "en".
  }
}
ORDER BY (lcase(?companyLabel))

Run the query.

This demonstrated two big issues with data. Firstly, the result set had dropped from 228 to 106 indicating that not all the company entries have the inception property set. The second was that only one, Scottish North Eastern Railway, had a full date (29th July 1856) specified, the rest only had a year and that was being displayed as 1st January for the year. Adding the OPTIONAL clause to the inception request returns the full data set with blanks where there is no inception date specified.

SELECT ?company ?companyLabel ?inception
WHERE {
  ?company wdt:P31 wd:Q249556; wdt:P17 wd:Q145 .
  OPTIONAL { ?company wdt:P571 ?inception. }
  SERVICE wikibase:label {
   bd:serviceParam wikibase:language "en".
  }
}
ORDER BY (lcase(?companyLabel))

Run the query

Railway companies are not a straightforward case when it comes to a start date due to there being no one single start date. Each railway company required an Act of Parliament to officially enable it to be formed and grant permission to build the railway line(s). This raises the question: is it the date that Act was passed, the date the company was actually formed or the date that the company commenced operating their service that should be used for the start date? Here is a revised query that gets both the start time (P580) and end time(P582) of the company if they have been set:

SELECT ?company ?companyLabel ?inception ?startTime ?endTime
WHERE {
  ?company wdt:P31 wd:Q249556; wdt:P17 wd:Q145 .
  OPTIONAL { ?company wdt:P571 ?inception. }
  OPTIONAL { ?company wdt:P580 ?startTime. }
  OPTIONAL { ?company wdt:P582 ?endTime. }
  SERVICE wikibase:label {
   bd:serviceParam wikibase:language "en".
  }
}
ORDER BY (lcase(?companyLabel))

Run the query

Unfortunately, of the 228 results only one, London, Midland and Scottish Railway, has a startTime and endTime, and London and North Eastern Railway is the only with endTime. Based on these results it looks like that startTime and endTime are not generally used for railway companies. Looking through the data for Scottish North Eastern Railway did turn up a new source of end dates in the form of the dissolved, abolished or demolished (P576) property. Adding a search for this resulted in 9 companies with dissolved dates. 

SELECT ?company ?companyLabel ?inception ?startTime ?endTime ?dissolved
WHERE {
  ?company wdt:P31 wd:Q249556; wdt:P17 wd:Q145 .
  OPTIONAL { ?company wdt:P571 ?inception. }
  OPTIONAL { ?company wdt:P580 ?startTime. }
  OPTIONAL { ?company wdt:P582 ?endTime. }
  OPTIONAL { ?company wdt:P576 ?dissolved. }
  SERVICE wikibase:label {
bd:serviceParam wikibase:language "en".
  }
}
ORDER BY (lcase(?companyLabel))

Run the query

There is no logic in which companies have this property: they range from Scottish North Eastern Railway dissolving on 10th August 1866 to several that ended due to the formation of British Railways, the more recent British Rail ending on 1st January 2001, and the short lived National Express East Coast (1st January 2007 – 1st January 2009). However, once again, the dates are at times misleading as, in the case of National Express East Coast, it is only the year rather than full date in the inception and dissolved, abolished or demolishedproperties.

Some of the railway companies, such as Underground Electric Railways Company of London, have another source of dates and that is as part of the railway company value for their instance of. It is possible to extract the start and end dates if they are present by making use of nested conditional queries. In the line:

OPTIONAL {?company p:P31 [ pq:P580 ?companyStart]. }

the startTime property is extracted from the instance of property if it exists.

SELECT ?company ?companyLabel ?inception ?startTime ?endTime ?dissolved ?companyStart ?companyEnd
WHERE {
  ?company wdt:P31 wd:Q249556; wdt:P17 wd:Q145 .
  OPTIONAL { ?company wdt:P571 ?inception. }
  OPTIONAL { ?company wdt:P580 ?startTime. }
  OPTIONAL { ?company wdt:P582 ?endTime. }
  OPTIONAL { ?company wdt:P576 ?dissolved. }
  OPTIONAL { ?company p:P31 [ pq:P580 ?companyStart] . }
  OPTIONAL { ?company p:P31 [ pq:P582 ?companyEnd] . }
  SERVICE wikibase:label {
   bd:serviceParam wikibase:language "en".
  }
}
ORDER BY (lcase(?companyLabel))

Run the query

Another date that can be used to work out the start and end of the companies can be found hanging off the values of very useful pair of properties: replaced by (P1366) and replaces (P1365). This conveniently connects into the next part of my exploration that will follow in Part Two. Although, as with many railway related things, the exact time of arrival of part two cannot be confirmed.

[Header photograph taken by Andrew Sage]

Aberdeen Plaques – Part One

On Saturday 14th December 2019 we ran a one-day mini hack event. The idea behind it was for people to come along for a day to work on their side projects and, if they needed support, attempt to persuade others to assist them.

That’s what I did with my Aberdeen Plaques project: something I’d had on the back burner for more than a year.

Why do it?

The commemorative plaques which are dotted around the city are a perfect candidate for open data. They have a subject, usually some dates, are located somewhere, and are of different types etc. Making that all available as open data would open up a whole range of possibilities.

Some Aberdeen plaques
Some Aberdeen plaques

If we captured all of that well then we could do analysis on the data (ratio of women to men, most represented professions), create walking routes (maybe one for the arts, one for the sciences and so on), create timelines to see what periods are more represented.

Having recently trained as a WikiMedia UK trainer – and having experimented with some of the tools (Wiki Commons, Wiki Data, Wikipedia, Histropedia) I was convinced that these were the right way to go.

Pre-event prep

So, in advance of the hack day I’d done a bit of prep in the two weeks running up to the day iteself.

I’d created a spreadheet which recorded the
* subject (person or ‘thing’)
* Gender if known
* the link to the now-retired city council plaques system (hidden from public view)
* The location if known
* The geo coordinates (to be determined)
* Whether the subject had a Wikipedia page (tbd)
* Whether there was an image of the plaque on Wiki Commons (tbd)
* Whether the subject of the plaque was represented on Wiki Data (tbd)
* Any identifiers on Open Plaques (tbd)
* Any external links (eg to Flickr for photos)

I’d then populated some of the data (eg whether there were images of the plaque on Wiki Commons) as well as some other bits. But most cells were blank.

Pre-event spreadsheet
Pre-event spreadsheet

As a keen walker and photographer I had also photographed and uploaded seventeen plaque images to Wiki Commons in the lead up, so that we would have some images to work with.

How to use our time most effectively on the day?

Our aim for the day was then to find out what data / info / images existed, fill in the gaps, and explore how to use WikiData to store and retrieve data, and how we could potentially create maps, timelines and similiar new products.

What we did on the day

At the start of the event we pitched our project ideas, and I managed to persude five others (Angela, Mike, Stephen, James and Steve) to join me in working on the plaques project.

Angela and Mike, and later Angela and Stephen would go out and take photographs. Steve, James and I would work on the data capture, completing research on what existed, creating new entries for the data on Wiki Data, and testing queries on the Wiki Data query service.

How we did it

We used the spreadsheet that I had set up to capture all of the data we’d gathered – and as it eveolved it would show progress as well as what was still lacking. We had no expectations that we would do it all on the day, but we could pick away at it in future weeks and months.

In the run-up to the event I’d discovered The Pingus’ album of plaques photographs on Flickr. Sadly these had not been published with a licence that would allow us to use them. I’d sent a request, a few days before CTC18, for them to change the licence for the Aberdeen plaques pictures to a CC-SA one. This would have allowed our republishing on Wiki Commons. Sadly it didn’t elicit a response. But the album did show that there were many more plaques than the old ACC system listed. And it was possible to get co-ordinates from them. So the number of plaques to deal with kept growing.

During the day James filled in loads of gaps in which subjects were on Wikipedia and which on Wikidata.

Steve and I experimented with capturing and querying the data. Structuring that in a way that aids recall through Wiki Data Query Service was an interative process. Firstly I tried adding a statement ‘commomorative plaque image’ (P1801) into the wikidata record for the subject as you can see in this first example https://www.wikidata.org/wiki/Q2095630. But that limited what we could do.

So, we discovered that we could create a new object which was an instance of commemorative plaque. Our first attempt was https://www.wikidata.org/wiki/Q78438703 and we evolved what we captured there – adding statement, and Steve discovered the ‘openPlaques plaque ID'(P1893). Incidentally we also tried ‘openplaques Subject ID’ (P1430) but adding that to the plaque object throws an error. The latter should be added to the person record not the plaque.

At the end of CTC18

We ended the day with

  • 138 plaques listed.
  • 57 sets of co-ordinates identified
  • 68 Wikipedia articles identified as matching plaque subjects (and eleven plaques subjects who had NO wikipedia page)
  • 36 Images in WikiCommons
  • 77 WikiData entries for the subject of the plaques (existing or created)
  • 11 new wikidata entries for the plaques themselves

This was a great leap forward in one day and would pave the way for future work.

What next?

Since CTC18 ended, I’ve got firmly stuck into this project over the xmas break. Over the last three weeks I have now photographed over a hundred plaques (plenty of walking) and have created wikidata entries for most plaques and also their subjects in wikidata.

I’ll cover all of that, and how we can now use the data in part two, coming soon.

2019 – the year in review

Intro

The year just past has been a pivotal one for Code The City, we’ve moved into a new home, expanded our operations, engaged with new communities of people, and started to put in place solid planning which will be underpinned by expansion and better governance. 

Here are some of the highlights from 2019.

Sponsors, volunteers and attendees

We couldn’t do what we do without the help of some amazing people. With just three trustees (Bruce, Steve and Andrew) and Ian our CEO, we couldn’t cover such a range of activities without serious help. Whether you come to our events, volunteer, or your company sponsors our work, you are making a difference in Aberdeen. 

Listing things is always dangerous as the potential to miss people out is huge. But here we go! 

The Data Lab, MBN Solutions, Scotland IS, InoApps, Forty-Two Studio, who all provided very generous financial support; H2O AI  donated to our charity in lieu of sponsorship of a meet-up;  and the James Hutton Institute and InoApps who also donated laptops for us to re-use at our code clubs. Codify, IFB, Converged Comms who provided specific funding for projects including buying kit for code club, and paying for new air quality devices – some of which we have still to build.

Our regular volunteers – Vanessa, Zoe, Attakrit, Charlotte, and Shibo –  plus the several parents who stay to help too, all help mentor the kids at Young City Coders club. 

Lee, Carlos, Scott, Rob who are on the steering group of the Python User Group meetup. 

Naomi, Ian N, David, and Gavin who are on the steering group for Air Aberdeen along with Kevin from 57 North who supervises the building of new sensor devices. 

The ONE Tech Hub, and ONE Codebase have created a great space not only for us to work in, but also in which to run our public-facing events. 

Everyone who stays behind to help us clear away plates, cups and uneaten food – or nips out to the shops when we run out of milk.

Apologies to anyone we have missed!


And finally YOU – everyone who has attended one of or sessions – you’ve helped make Aberdeen a little bit better place to live in. Thank you!

Hack weekends

We ran four hack events this year. Here is a quick run-down. 

Air Quality 1

We kicked off 2019 with the CTC15 AIr Quality hack in February. This saw us create fourteen new devices which people took home to install and start gathering data. We also had a number of teams looking at the data coming from the sensors, and some looking at how we could use LoraWAN as a data transport network. We set some targets for sensor numbers which were, in retrospect, perhaps a little ambitious. We set up a website (https://airaberdeen.org

Air Quality 2

Unusually for us we had a second event on the same theme in quick succession: CTC16 in June. Attendees created another fourteen devices. We developed a better model for the data, improved on the website and governance of the project. We got great coverage on TV, on radio and in local newspapers. 

Make Aberdeen Better

CTC17 came along in November. The theme was a broad one – what would you do to make Aberdeen a better place to live, work or play? Attendees chose four projects to work on: public transport, improved methods of monitoring air quality, how we might match IT volunteers to charities needing IT help, and the open data around recycling.

Xmas mini-hack

CTC18, our final hack of the year was another themeless one, timed to fit into a single day. We asked participants to come and work on a pet side-project, or to help someone else with theirs. Despite a lower turnout in the run-up to Christmas, we still had eight projects being worked on during the day.

New home, service

In the late summer the ONE Tech Hub opened and we moved in as one of the first tenants. So far we rent a single desk in the co-working space but we aim to expand that next year. The building is great, which is why we run all of our events there now, and as numbers grow it promises to fulfil its promise as the bustling centre of Aberdeen’s tech community. 

Having started a new Data Meet-up in 2018 we moved that to ONE Tech Hub along with our hack events. We also kicked off a new Python User group in September this year, the same year as we started to deliver Young City Coders sessions to encourage youngsters to get into coding, using primarily Scratch and Python. 

We also ran our first WikiMedia Editathon in August – using WIkipedia, WIki Commons and Wikidata to capture and share some of the history of Aberdeen’s cinemas using these platforms. We are really supportive of better using all of the wikimedia tools. Ian recently attended a three-day course to become a wikimedia trainer. And at CTC18 there were two projects using wikidata and wiki commons too. Expect much more of this next year! 

Some recognition and some numbers

We’ve been monitoring our reach and impact this year.  

In March we were delighted to see that Code The City made it onto the Digital Social Innovation For Europe platform.  This project was to identify organisations and projects across the EU who are making an impact using tech and data for civic good. 

In July we appeared for the first time in an Academic journal – in an article about using a hackathon to bring together health professionals, data scientists and others to address health challenges. 

We will be launching our  dashboard in the New Year. Meantime, here are some numbers to chew on. 

Hack events

We ran four sessions, detailed above. We had 102 attendees and 15 facilitators who put in a total of 1,872 hours of effort on a total of 20 projects. All of this was for civic benefit. 

Young City Coders

We ran six sessions of our Young City Coders which started in September. The sessions had a total of 114 kids attending and 28 mentors giving up two hours or more. 

Data Meet-ups

In 2019 we had 12 data meet-ups with 28 speakers and 575 attendees! This is becoming a really strong local community of practitioners and researchers from academia and local industry. 

Python Meet-ups

Each of our four sessions from September to December had a speaker, and attracted a total of 112 attendees who were set small project tasks. 

The year ahead

2020 is going to see CTC accelerate its expansion. We’re recruiting two new board members, and we have drawn up a business plan which we will share soon. That should see us expand the team and strengthen our ability to drive positive societal change through tech, data and volunteering. We have two large companies considering providing sponsorship for new activities next year.  We’ll also be looking at improving our fundraising – widening the range of sources that we approach for funding, and allowing us to hire staff for the first time. 

Open Data

We’re long-term champions of open data as many of you will have read in previous posts. We’ve identified the need to strengthen the Open Data community in Scotland and to contribute beyond our own activities. Not only has Ian joined the Civic side of Open Government Partnership, and is leading on Commitment three of that to improve open data provision, but he has also joined the board of the Data Commons Scotland programme at Stirling University. 

Scottish Open Data Unconference

Beyond that we have created, and we are going to run, the Scottish Open Data Unconference in March. This promises to be a great coming together of the data community including academia, government, developers, and publishers. If you haven’t yet signed up please do so now – there are only 11 tickets of 90 still available. We’ll also need volunteers to help run it: scribes for sessions, helping to orientate new visitors, covering reception, photography, blogging etc. Let us know how you could help. 

We look forward to working with you all in the New Year and wish you all a peaceful and relaxing time over the festive period. 

 

Ian, Steve, Bruce and Andrew

[Photo by Eric Rothermel on Unsplash\